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LETTER TO THE EDITOR 

On the scaling properties of various invasion models 
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t SPHT, CEN Saclay, F91191 Cif-sur-Yvette, France 
$ HLRZ, KFA Julich, Postfach 1913, 5170 Julich, Federal Republic of Germany 

Received 21 June 1990 

Abstract. We investigate the multiscaling behaviour of usual and directed invasion percola- 
tion, with and without a power-law decay with the distance from an initial seed in the 
distribution of random numbers. We find universal multiscaling behaviour only in the 
presence of a power-law gradient in space. 

Invasion percolation [ 11 is a geometrical growth model that has been used to describe 
the penetration of a fluid into a porous medium. The clusters of penetrating fluid 
created by invasion percolation evolve automatically into fractals indistinguishable 
from the incipient infinite clusters at the critical threshold of usual percolation. For 
this reason invasion percolation constitutes an ideal example of self-organized criti- 
cality. 

One of the most interesting questions about growth models is the scaling behaviour 
of their growth zone. In many cases, like the Eden model [2] or epidemics [3], a new 
set of growth exponents is found. Even more complicated seems to be the situation in 
nucleation [4] or diffusion limited aggregation (DLA) [ 5 ]  where recently a new type 
of scaling, called multiscaling, has been proposed. In this case the effective fractal 
dimension continuously varies radially within the growth zone. 

The growth of invasion percolation clusters occurs as a sequence of jumps [ 6 ] ,  and 
it is therefore likely that this behaviour reflects in the scaling properties of the growth 
zone. It is the purpose of this letter to investigate the radial dependence of the fractal 
dimension for various invasion percolation models. Besides the standard version of 
the model without trapping [ 13 we also consider directed invasion percolation and 
invasion percolation with a spatially graded distribution of random numbers. 

Invasion percolation is defined by placing on each site of a regular lattice a random 
number zi E (0,l) uncorrelated from site to site. Then one chooses in the centre of the 
lattice a site, the seed of the growth, and occupies this site. Finally one grows the 
cluster by applying over and over again the following rule: one chooses among all the 
sites that are nearest neighbours of occupied sites the one which has the smallest value 
of z, and occupies it. On a finite lattice the growth is stopped when a site on the 
boundary is occupied. 

The ensemble of occupied sites produced with this algorithm is necessarily a single 
cluster, i.e. each site is connected to any other site by a path of nearest-neighbouring 
occupied sites. It has been convincingly argued and shown numerically, but not yet 
rigorously proven, that the fractal dimension df of this cluster equals the fractal 
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dimension of the spanning cluster at p c  in standard percolation, namely df= 91/48 in 
two dimensions. 

Besides the usual invasion percolation without trapping, described above, we also 
study here the directed case. This implies that each bond on the lattice allows occupation 
in one direction only and not in the other. In our case we consider a square lattice 
with all horizontal bonds directed to the right and all vertical bonds directed downwards. 
In the description of a fluid penetrating a porous medium this means that the channels 
between pores have valves that allow the fluid to flow in one direction only. 

The algorithmic implementation of directed invasion percolation is straightforward: 
the site chosen to be occupied must not just be a nearest neighbour of an already 
occupied one, but the occupied neighbour must also be either up or to the left in the 
case of a square lattice. 

The random numbers z assigned at the beginning to the sites of the lattice are 
usually uniformly distributed. We study here also the effects of radially graded random 
numbers. The purpose is to investigate either the effect of a pressure gradient, or a 
radial variation in the structure of the porous medium. In order to cover a wide range 
of different distributions we consider a power-law decay in the value of the random 
numbers as function of the distance from the seed, that is 

z ( r )  = zor- 

where zo is a random number uniformly distributed between zero and one. 
The effect of such a gradient depends on the sign of cy. If a is negative the clusters 

tend to be compact like Eden clusters. More interesting is the case of positive a, which 
we analyse in detail for both usual and directed invasion percolation. The clusters 
grow in one direction only, but the direction itself depends on the configuration of 
random numbers. In figure 1 we show one cluster obtained for usual invasion percola- 
tion with a = 1. 

.I r . 7- I" 

Figure 1. Invasion percolation cluster grown in the presence of a gradient with (Y = 1.0 on 
a cubic lattice of linear size L = 400. The growing seed is placed in the centre of the lattice 
(*I. 
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We know that usual invasion percolation clusters are fractals, i.e. that the number 
M of sites in the cluster scales as 

M - R d ‘  ( 2 )  

where R is the radius of gyration of the cluster. 

anisotropic scaling law: their mass M growths with their characteristic length 
Directed clusters, like directed percolation clusters or directed animals, follow an 

as 

M - ki’”ll @a? 

51 - ( 3 b )  

whereas their width t1 scales as 

where 8 is often expressed as 8 = 1 + vli/ vL. For directed percolation one has 8 = 1.58 
and vil=0.64 in two dimensions [7]. We expect our directed invasion percolation 
clusters to have this behaviour and probably also the clusters obtained in the gradient 
of (1) will follow for a # 0 a scaling of this type. 

If instead of the total mass M of the cluster one considers the mass within concentric 
shells around the seed, a more general scaiing ansatz, called multiscaling has been 
proposed [4]. Let r be the radius of the shell and R the radius of gyration of the 
cluster. For fixed values of the parameter x = r /  R the mass m(r, K )  in the shell scales 
as 

m(r ,  R )  = rdr (X)F(x)  (4) 

where F ( x )  is a scaling function. If d , ( x )  is a constant the normal scaling (2) is 
recovered. On the other hand, if d , ( x )  is a function of x as it was found for nucleation 
[4] and DLA [5] one has an infinity of fractal dimensions, namely multiscaling. 

Typically multiscaling is due to the fact that at some distance from the seed the 
cluster has not finished growing and therefore the effective fractal dimension in these 
unfinished regions has not yet converged to the value expected for d,, in the centre of 
an infinitely large cluster. Next we investigate this question for the various invasion 
percolation models introduced. 

We have performed numerical simulations on the square lattice for standard and 
directed invasion percolation. Once an initial seed is placed on the lattice, the clusters 
are grown following the algorithms discussed above. We analyse both the case of the 
random numbers z drawn from the uniform distribution, and the case of a radial 
gradient in the value of  z. To this extent we consider the power law in (1) for values 
of a =0.1 and 1.0. The whole simulation took about 130 hours of CPU time on a Cray 
XMP. 

Once the cluster reaches the boundary of the lattice the growth is stopped and the 
multiscaling analysis is performed. This analysis of the clusters is also done during 
the growth process, more precisely each time 500 new sites are added to the cluster, 
in order to have data for a wide range of values of the radius of gyration R. For each 
cluster we calculate the radius of gyration R and then the mass m(r ,  R )  in a shell at 
a distance r = xR from the initial seed. In practice, we choose a sequence of values of 
x, ranging from 0.1 to about 2.0, and determine for each value of x the number of 
points whose distance from the seed is between r = x R  and r’ = x ’ R  where x‘ = x + 0.1. 

The log-log plot of the average mass ( m  ( r ,  R ) )  against the average radius ( R )  for 
fixed x provides the fractal dimension df(x) defined in (4), as seen in figure 2. As x 
increases from 0.1 to 2.0 one successively explores the regions of the cluster starting 
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Figure 2. Log-log plot of the average mass in a shell ( m ( r ,  R)) against the average radius 
of gyration ( R )  for 1500 configurations of invasion percolation clusters grown with the 
gradient exponent a = 0.1 on a lattice of linear size L = 760. The values of the slope d, (x )  
are: 1.575 for x = 1.6 (0), 1.356 for x = 1.8 ( x ) and 0.890 for x = 2.0 (0). 

from the ones very close to the seed and whose growth is settled, up to the very external 
regions belonging to the last growing front. If any multiscaling behaviour is then 
present in this problem, one expects to find it in the x dependence of df(x). 

Figure 3 shows the fractal dimension d d x )  as function of x for standard invasion 
percolation and in the presence of a radial gradient. For the standard case (a = 0.0) 
the fractal dimension is constant within statistical fluctuations and close to the expected 
value df- 1.89. 

0.6 I 
*.***... . *  2:. . 4 **........*.. 

L I 
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X 

Figure 3. The fractal dimension d , ( x )  as function of x for 800 configurations of standard 
invasion percolation clusters (0); invasion percolation clusters in the presence of a radial 
gradient with a = 0.1 (1500 configurations, A )  and a = 1.0 (4000 configurations, + 1. The 
linear size of the lattice on which the clusters are grown is L = 760. 
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In the case of a radial gradient in the random numbers, the data exhibit instead a 
richer behaviour, namely multiscaling. The log-log plot of (m( r, R ) )  as function of 
( R )  shows a continuously varying slope for various values of x (figure 2). As the system 
size increases the data are linear over a wider range of R. A deviation from the linear 
behaviour is observed for small clusters, whereas the sharp bending of the data for 
large radii is due to the finite size of the lattice on which the clusters are grown. 
Moreover, the stronger statistical fluctuations for large x (for instance, x = 2.0 in figure 
2) are due to the small number of clusters giving contributions at distances so far from 
the initial seed ( r  = 2 R ) .  

The curve of fractal dimensions exhibits an initial plateau at a value of d, (x )  close 
to 1.47 * 0.04. This exponent seems to be independent within error bars of the strength 
of the radial gradient, i.e. the value of a chosen, for (Y > 0. It is therefore a new 
universal exponent found for invasion percolation in the presence of a spatial gradient. 
The d,-(x) curve has then a maximum at x = 1.4 and decays towards zero for larger 
values of x. The general shape of df(x) is similar to the one found for DLA [SI in two 
dimensions, where the plateau is found at the well known value of the fractal dimension 

We have performed the same analysis for the directed invasion percolation clusters. 
Again it is found that in the standard model d, (x )  is about constant within error bars 
and close to 1.44i0.02 (figure 4). This value is consistent with the expected fractal 
dimension for two-dimensional directed percolation, where df = 1/ vIl = 1.56 [7]. In the 
presence of a radial gradient in the random numbers, the plateau shifts down to a 
value 1.29 i 0.03, a novel exponent for directed invasion percolation, and d f ( x )  again 
seems to decrease for x larger than 1.6. Compared to the case of standard invasion 
percolation with a gradient though, the data here exhibit a less sharp decay and, due 
to rather large error bars for large x, we cannot completely exclude the validity of 
simple scaling, with only one fractal dimension, for the directed invasion percolation 
cluster with a radial gradient. 

d f =  1.7. 

’ 1 ’ I ’ 1 ’ 1 I ’ 1 .  
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In conclusion, multiscaling has been recently found in two rather different problems: 
in DLA, a far from equilibrium dynamical process; and in spinodal decomposition, a 
relaxation process towards equilibrium. The common feature between these two prob- 
lems is the presence of two characteristic lengths, having the same scaling behaviour 
but differing by a logarithmic factor. For instance, in DLA these two lengths are the 
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radius of gyration of the cluster and the width of the growing interface [2]. One might 
therefore infer that multiscaling appears typically when dealing with growth processes. 

In this letter we have introduced a new class of models for standard and directed 
invasion percolation, where the growing probabilities are function of the distance from 
the initial seed. These models could be used to study the flow of a fluid in a porous 
medium in the presence of a pressure gradient. For the various invasion models we 
find that simple scaling, with a single fractal dimension, is followed when the distribu- 
tion of random numbers, and therefore of growing probabilities, is uniform for all 
perimeter sites. 

However, if a radial gradient is introduced in the distribution, the growth of the 
cluster becomes faster and therefore more unstable and farther away from equilibrium. 
In this case multiscaling occurs and an infinite number of fractal dimensions is necessary 
to characterize the geometrical properties of the cluster. The values of the fractal 
dimensions found for these models are new scaling exponents, universal with respect 
to strength of the spatial gradient for (Y > 0. 
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